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Characterization of Partially Ordered
Classes of Life Distributions.

by
Naftali A. Langberg, Ramén V. Lebn, and Frank Proschan

ABSTRACT

In this paper we obtain characterizations of life distributions F such
that (a) G-I(F) is convex {concave) and alternatively (b) GJ(F) is starshaped
(antistarshaped), where G is an absolutely continuous life distribution with
positive, bounded, right continuous density. These characterizations generalize
earlier results for the IFR(DFR) and IFRA(DFRA) classes, and should prove
useful in unifying the study of the class of distributions with decreasing
density, comparing Weibull (Gamma) distributions with different shape parameters,

etc.




1. Introduction.

In a previous paper (Langberg, Le6én, and Proschan, 1978), we obtain
characterizations of large classes of standard nonparametric life distributions,

such as the IFR(DFR), IFRA(DFRA), etc. (See Section 2 for definitions and nota-

tion.) These characterizations are obtained under the weakest possible assumptions

that we can make concerning the life distributions being characterized.

In the present paper, we continue our characterization work and also
obtain additional results in one direction of implication, but now we focus
on more general classes of distributions, many of them of interest and applicable
in reliability. We consider classes of distributions F such that G'I(F) is
convex (concave) or starshaped (antistarshaped), where G is a known distribution.
The assumption that G is known is reasonable in many practical situations, as
seen from the following pairs (F, G) such that G-I(F) is convex: (1) G is
exponential, F is IFR; (2) G is uniform, F has decreasing density; (3) G is
Weibull (Gamma) with shape parameter a, F is Weibull (Gamma) with shape parameter
B(»>a); etc. Similar pairs can be displayed for G-I(F) is starshaped. Since
we assume G known and F unknown, we make convenient smoothness assumptions
for G, but as few assumptions about F as possible.

As pointed out in Barlow and Proschan (1975), Barlow and Doksum (1972),
Barlow and Van Zwet (1970), the advantage of considering these more general
classes is that many results, tests, methods of inference, methods of proof,
etc., of use in the IFR(DFR), IFRA(DFRA) classes carry over with minor modifi-
cations to the corresponding more general classes.

In Section 2, we present definitions, notation, and elementary properties.

In Section 3, we obtain characterization results for the Barlow-Doksum




transform, a generalization of the well known total time on test transform.

These results are not simply of theoretical interest, but can be used to develop
tests as to whether a set of underlying data come from a Weibull with greater
shape parameter than say a(>0). For example, Barlow (personal communication)
has found that increasing stress often leads to increasing shape parameter of
the Weibull governing lifelength. In Section 4, characterization results

for convex and concave ordering are obtained in terms of order statistics

or their spacings. Section 5 is devoted to characterization of starshaped

and antistarshaped orderings in terms of order statistics: spacings are not

useful in these characterizations.




2. Preliminaries.

Let F be a life distribution, that is, F(0-) = 0. We use the following

notation and conventions: F'l(t) inf{x: F(x) > t}, t ¢ [0, 1);

F"l(l) = sup{x: F(x) <1}; F=1-F; R = -enF. We use "increasing" in place
of '"nondecreasing' and ''decreasing" in place of '"nonincreasing''. Throughout
the paper we assume that G is a fixed absolutely continuous life distribution
with positive, bounded, and right continuous density g on the interval

(G-I(O), G'l(l)). Let X » X, (Yy, Y5, ..., Y ) be a random sample

1° Xz, i

of size n from F(G) and let X <,..< Yn ) be

1:n by x2:n S xn:n (Yl:n = Y2:n

the corresponding order statistics.

:n

Definition 2.1. The life distribution F is convex with respect to G,

written F < G, if either (i) F is degenerate or (ii) G-IF is convex on
c

(-=, Fr ).

Definition 2.2. The life distribution F is concave with respect to G,

written F 5 G if 6 1F is concave on (F'l(O), ).

Let F be nondegenerate, strictly increasing on (F—I(O), F'l(l)) and
G'l(l) = o, Then F : G if and only if Gé§lt This relationship is the reason
only convex ordering is usually defined in the literature (see for example
Barlow and Proschan, 1975, p. 106). However without assumptions on F, the
two orderings are not so easily related.

We define the increasing failure rate (IFR) and shifted decreasing failure

rate (SDFR) classes of life distributions.

Definition 2.3. The life distribution F is IFR if either (i) F is

degenerate or (ii) R(x) is convex on (-=, F'l(l)).
Definition 2.4. The life distribution F is SDFR if R(x) is concave on

1), =.




If G is the exponential distribution with mean 1, then ¢’ 'F = R. Hence
F is IFR(SDFR) if and only if F is convex (concave) with respect to any expo-
nential distribution.

If G is the uniform distribution on [0, a], a > 0, then Féﬁ,G is equivalent

to F having a decreasing density. If F(G) denotes the gamma distribution
with shape parameter a(B), a < B then F : G. The Weibull family is similarly
ordered with respect to its shape parameter (Van Zwet, 1964, and Barlow and
Proschan, 1966).

Definition 2.5. The life distribution F is starshaped (antistarshaped)

e Pone S i ;
with respect to G, written F § G (ngtﬂ, if t G "F(t) is increasing

(decreasing) int (0 < t < F'l(l)).

We define the increasing failure rate average (IFRA) and the decreasing

failure rate average (DFRA) classes of life distributions.

Definition 2.6. The life distribution F is IFRA(DFRA) if %R(t) is

increasing (decreasing) in t (0 < t < F'l(l)).
Let G be any exponential distribution. Then F § G (Féﬁ G) if and only if
F is IFRA(DFRA). Let G be the uniform distribution on {0, a), and F have a

density. Then ng G is equivalent to
(2.1) f(t)t < F(t) for t > 0.

Note that the class of distributions satisfying (2.1) contains the class of

distributions with decrcasing densities.

Finally we remark that F : G implies that F ¢ G. Similarly, Fé% G implies

that F a> G.




3. Properties of the Barlow-Doksum Transform.

-1 ¢ -
For a fixed G let H;l(t) - [g B p(u)du. This transform of F

was first introduced in connection with isotonic tests of convex ordering by

Barlow and Doksum (1972). Hence we call H;l the Barlow-Doksum (B-D) transform.

When G is the exponential distribution HF1 is the usual total time on test
transform studied by Barlow (1977), Barlow and Campo (1975), and Langberg,
Le6n, and Proschan (1978), among others. We should remark that Chandra and
Singpurwalla (1978) have pointed out the close relationship between the total
time on test transform and the Lorenz curve used by econometrists. In this
section we develop some properties of H; which we use in the proofs of
Section 4.

Before stating the first theorem we need two definitions.

Definition 3.1. A point x is a point (f increase of F if

F(x - h) < F(x) < F(x + h) for every h > 0.

Definition 3.2. A sequence {k,, nr)}:-l of ordered pairs of natural

numbers is a t-sequence (0 <t < 1) if (i) 1 < kr g_nr <n for all r, and

T+1
(ii) kr/“r +tasy + o,
k .
Let To(x,, ) = J 86 Ehyx,, - x

i=1
' -1 «
distribution with mean 1, then TG(xk:n) = n T(xk:n)’ where T(xk:n) z

). If G is the exponential

i-1l:n

k

J(n-i» DX, - X{_;.,)» 1S the total time on test statistics commonly
is1 in -1:n —

used in reliability theory (see for example Barlow and Proschan, 1975, p. 61).

If n items are placed on test at time 0 and successive failures are observed

at times X

n<X., %2 Xy:n» then T(X, . ) represents the total test time

1:
observed between 0 and xk_n.

We may now state and prove the following theorem.




Theorem 3.3. Let F-I(t) be a point of increase of F, and let (k, n)

range over a t-sequence. Then
5 2 ) > H'l(t) a.s. as n + o
6k:n) > HE o :

Proof. Let Fn denote the empirical distribution function of F. Then

X
-1,k-1, _ ¢ k:n -1 :
TG(xk:n) = HFn (_ﬁ—)" IO g G Fn(u)du. Also for (k, n) ranging over a

t-sequence, xk.n -+ F‘l(t) a.s. as n + » since F-l(t) is a point of increase of
F (see Rao, 1973, p. 423). The desired result follows by the Glivenko-Cantelli

Theorem (Chung, 1974, p. 133) and the continuity of g et I

e 2 reTR -

Next we note that if EX1 is finite, then Exk:n and ETG(xk:n) are also

. = nih and

finite. This follows since 0 5_xy-n < x1
s 1

pde
> I~

-1 1i-1
T < G (— X. - X, :
G(xk:n) "(1§;§pg & )) izl( i:n 1-1:n) 5-(0§;2wg(X))xk:n

The above inequalities can be used to show also that whenever Ex1 is

finite, (TG(xkr:q?}r=1 is uniformly integrable for every t-sequence
{(kr, nr)}:=l' Since a uniformly integrable sequence which converges almost

surely converges in mean (see Breiman, 1973, p. 91), we have thus shown:
Theorem 3.4. Let t, k, and n be as in Theorem 3.3 and let EXl be finite.
Then ElTG(xk:n) - HF'I(t)‘ + 0 a.s. as n » », In particular, ETG(Xk:n) >
H;l(t) as n + =,
As shown in Langberg, Leén, and Proschan (1978), neither Theorem 3.3
nor Theorem 3.4 is true if F-l(t) is not a point of increase of F. Theorems
3.3 and 3.4 contain as special cases similar theorems of Langberg, Leén, and
Proschan (1978) concerning the total time on test statistics. Also these
theorems are related to a theorem of Barlow and van Zwet (Theorem 2.2 of

Barlow and Doksum, 1972).




We

Let +f(xo) denote the right-hand derivativeof f at the point x

0
will need the following lemma in the proof of Theorem 3.6 below.
Lemma 3.5. Let x be a point of increase and of continuity of F. Then
+H;I(F(x)) exists and is nonzero if and only if +F(x) exists and is nonzero.
In this case, +(G.IF(x)) exists and is nonzero, and *H;I(F(x)) +(G'IF(x)) 3 &
Proof. Note that in a neighborhood of x, F'1 behaves like the usual
inverse function of F. The result follows using standard differentiation
results. ||
The following theorem relates convex (concave) ordering to the B-D
transform.
Theorem 3.6. Let F be a life distribution. Then F < G (Fé&,G) if and
only if H;l is concave (convex) on [0, 1).
We will need the following simple properties of H;l in the proof of
Theorem 3.6.
.1 H'(0) = Fl0).
(3.2) HZ'(te) = H'(t) for t ¢ [0, 1].
(3.3) H;l is increasing on [0, 1].
(3.4) For y ¢ [0, =), the set {s: Hgl(s) =y} = [a, b), where 0 < a <b <1,
if and only if P(X, = F () = b - a.
(3.5) For 0 <a <1, H'(a) = H'(a) if and only if F(F!(a-)) = F(F ™ (a)).
In particular, H;l is continuous on [a, b) if and only if every point in
(F-l(a), F—l(b-)) is a point of increase of F.
Proof of Theorem 3.6. Let H;l be concave on [0, 1). Since H;l is increasing
on [0, 1), there exists a real number A in [0, 1) such that H;I is strictly

increasing on [0, A] and constant on [A, 1). If A =0, HF is constant on




B e

[0, 1) and consequently F g G since in this case F is degenerate at F-l(O).

Next suppose that A > 0. It follows that +H;l(t) > 0 for all t ¢ (0, A).
Equivalently, "H. '(t) > 0 for x in (F1(0), F1(1)) since Fl(a) = Flq1).
By (3.4) and (3.5) every point of (F'I(O), F-l(l)) is a point of increase and
of continuity of F. Hence by Lemma 3.5, the concavity of H;I implies that

+(G_IF(x)) exists and is increasing on (F-I(O), F-l(l)), that is, 6 F is

convex on (F 1(0), F'1(1)). Since by (3.5), F(F'1(0)) = 0, it follows that

F < G.
c

Next let F S G. Then either F is degenerate, in which case H;l is constant

and thus concave, or 6 ¢ is convex on § = (F’l(O), F'l(l)) and F(F'I(O)) = 0.

We assume the latter case. If x € S and h > 0, then

0 < CFm - e )y lRx e b - TR
1 h :
x - F 7(0)

Consequently ’(G'IF) exists and is positive on S. Now since 'F = +(G_lF) . g(G'lF)
is positive on S, S contains only points of increase and of continuity of F.
1

Thus by Lemm= 3.5, +H;. F is decreasing on S, that is, +H;1 is concave on (0, 1).

By (3.2), H;l is concave on [0, 1).
The counterpart result for concave ordering can be proved similarly. ||
Barlow and Doksum (1972) obtained the conclusion of Theorem 3.6, but

under stronger regularity conditions on F.

Corollary 3.7. (Barlow and Campo, 1975). Let G be any exponential
distribution. Then the life distribution F is IFR(SDFR) if and only if H;1 is
concave (convex) on [0, 1].

Our proof of Corollary 3.7 avoids some technical difficulties which arise

in the limiting argument used in the Barlow and Campo proof of the "if' part

of Corollary 3.7.




4. Convex (Concave) Ordering and Order Statistics.

In this section we present a series of results concerning convex (concave)
ordering and order statistics. Our first theorem gives a sufficient condition
< < -
for F & g:v) G
Theorem 4.1. Let F and G be life distributions with finite means.

Suppose F is continuous and let E(X,, - X ;. )/E(Y,. ) be

- Yk-l:n

decreasing (increasing) in k (k = 2, ..., n) for infinitely many values of

n>2. Then F ¢ ()G.

In order to prove Theorem 4.1 we need the following lemma.

Lemma 4.2. Let the conditions of Lemma 4.1 be satisfied. Then the
support of F is the interval [F'I(O), F'l(l)].

Proof. The support of a continuous distribution is a closed set without
isolated points (see Chung, 1974, p. 10). It follows that if S, the support

of F, is not an interval, then we can find a, b, and € such that (a - €, a] < s,

.ttt Fa-¢)
" . :

+ h] < (t, F(b + €)) and

(a, b) « {x: x ¢ s}, and [b, b + €) € S. Let t = F(a) = F(b), t

Also let h > 0 be small enough so that [t1 - h, tz

[t, - h, t, + hl < (¢, F(b + €)).

-1,i-1
Bg 6 (X, - X 1.0) I
By hypothesis, ) : — is decreasing (increasing) in i
Bg & 500, - Yi-1:n? f
i(i=2 3 ..., n) for infinitely many values of n. Now observe that if |

n n
{ai}i=2 and {bi}i=2 are sequences of positive real numbers such that ai/bi is

k+j k+j
decreasing (increasing) in i (i = 2, ..., n), then Z ai/ Z bi is decreasing
i=k i=k

(increasing) in k (k = 2, ..., n - j) foreachj (j =1, ..., n - 1). Thus

we obtain for each one of the infinitely many n that
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(x([n(t -h)J+[n(2h) ) :n) "~ ETgKX

ET (Y

[n(t,-h)]: n)

([n(t -h)]+[n(2h)}:n - ETG(Y

[n(t, -]

ET X (nct-m) 1+ n2ny 1) :0) ™ ET6X[n(e-h)]:n)

BT (tnce-m) 1+ tnzm 1) :n = BTG [n(t-h)]:n)

(4.1) >(<)

6t m 1+ @ D in ~ ETeC e, -my1en)

(In(t,-m 1+ Den ™ 6 e,-m):n)

L5 BT (Y

The points at which F equals t1 - h, t1 +h, t-h, t+h, t2 - h, and t2 + h
are in the interior of S and are consequently points of increase of F. Applying

Theorem 3.4 to the chain of inequalities (4.1), we conclude that

He' (e« 0y - HZMGe, - W) e + ) - HZM(e - h)
7h 2% 7h
(4.2) H;l(tz +h) - H'(t, - )
>(<) 2
- 2h
Si -1, _ (F ( ) ;
ince HF <y = f g G F(u)du is continuous at tl and t2, by letting

h + 0 in (4.2), we conclude that lim[H; (t + h) - H; (t - h)] = 0. But since
h~»0

H;I is increasing, this implies that HEI is continuous at t, or equivalently,

that F'l is continuous at t. This contradicts the fact that Fis constant on
(a, b). It follows that S must be an interval, as was to be shown. ||

Proof of Theorem 4.1. Let t t,, and h be such that 0 <t, <t, <t, +h<l.

1’ 1 2 2
Using the argument in the proof of Lemma 4.2 yielding (4.2), we obtain:

(4.3) HE'(e, + B - HNe) 209 BN, + ) - HNe ).




Since (4.3) is true for all t
;1 must be concave (convex) on [0, 1). By Theorem 3.6, this implies that
F<(g) 6 ||

Theorem 4.3 is a partial converse to Theorem 4.1.

1’ tz, and h satisfying the above constraints,

H

Theorem 4.3. Let F and G be life distributions with finite means and
suppose F - Q;) G. Then

(4.4) lim E(X[n(t+h)]:n 5 x[nt]:n)

E(Y[n(t + h)]:n ~ Y[nt]:n)

n-ore

is decreasing (increasing) in t (0 <t <t + h < 1) for all h (0 < h < 1).
Proof. Let F < G. Note that every element of o, Flay) is a
point of increase of F since F é G and every element of (G'I(O), G'l(l)) is
a point of increase of G.
P Thus X[nt]:n
a.s. as n + » (see Rao, 1973, p. 423). We show X

s F L) a.s. and ¥ @ (o

[nt]:n

ke is uniformly integrable.
We have P(x[nt]:n > x) = P(B(n, F(x))> n - [nt] + 1), where B(n, F(x)) denotes

a binomial random variable with parameters n and F(x). Thus

n
(4.5) P(X[nt]:n > X) SWT(X)

since P(Z > A) < EZ/A for any nonnegative random variable Z and any A > 0.

Hence

Ex[nt]:nl[x[nt]:n SRls fA P[x[nt]:n R Aplx[nt]:n =8
[by integration by parts]

< e TUAF(0dx + AF(R)

[by (4.5)]

< 1
- (EX I[X; > AD).
n n




-

e o ipie s o o Y
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It follows that X (and similarly Y ) is a uniformly integrable

[nt):n [nt]l:n
sequence in n. Consequently, Ex[nt]-n > F'l(t) and EY[nt]'n -+ G—l(t) as
) -1 : -1 .
n > », Hence the limit in (4.4) exists and equals Letp ) 2 F (O But j

1

¢l +n) -cly i

since G'IF is convex on (-, F'l(l))on (-m,F'l(l))for 0 < tl < t2 < t2 + h<1l;
0 < h <1, then '

c‘lp(F'l(tl + b)) - G-IF(F'I(tl) c‘lpcp‘lctz S h) - G‘IF(F'I(tZ))
<

F‘l(tl +h) - F'l(tl) i F'l(t2 +h) - F'l(tz)

Equivalently, the limit in (4.4) is decreasing int (0 <t <t + h < 1) for all
h (0 <h<1).
A similar argument yields the result when F < G. [
Our next result concerning convex (concave) ordering and order statistics
is an immediate consequence of the following lemma of Barlow and Proschan (1966).
Lemma 4.4. (Lemma 3.5 of Barlow and Proschan, 1966). Let Fi:n denote the
distribution of the ith order statistic in a sample of size n from a continuous .

distribution F defined on (-», ). Suppose h(x) changes signs k times and

h(i, n) = [ h(x)dF, (%)

converges absolutely. Then (i)h(i, n) changes signs at most k times as a
function of i = 1, 2, ..., n for fixed n, and changes sign at most k times as

a function of n =1, 2, ..., for fixed i. Furthermore, if h(i, n) changes

sign exactly k times as a function of i(n), then h(i, n) must have the same
(opposite) arrangement of signs in i(n) as does h(x), where x, i, and n traverse

their respective domains from left to right.
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(ii) h - i, n) changes sign at most k tires as a function of n =1, 2, ...;
if h(n - i, n) actually does change sign in n exactly k times, then the changes
occur in the same order as do those of h(x).

Before stating our result, we observe that F é G and EY < « imply that
EX < » and consequently that Exi:n Stw Fow ol Gandn (i =1, 2, ..., n; n 3> 1),

Theorem 4.5. Let F < () G, F be continuous at F-l(l), and EY < =
(continuous at F'l(O), EY < », and EX < @), Then (i) for all a > 0 and b > 0,

a EX__._:n - Eyi:n - b changes signs at most twice ini =1, 2, ... n(n=1, 2, ...),
and if twice, from negative to positivz to negative (positive to negative to

positive; (ii) for all a > 0, b > 0, a EX - EY - b changes signs at

n-i:n n-i:n
most twice inn =1, 2, ..., and if twice, from negative to positive to
negative (positive to negative to positive).

Proof. Let F < G and let ¢(x) = G-IF(x). Then ¢ is convex. Thus for

a20,b20, (ax - b) - ¢(x) changes signs at most twice, and if twice, from

negative to positive to negative. Hence by Lemma 4.4(i),

h(i, n) = j‘;(ax - b - 6(x))dF,,

e T b - EY{:n

changes sign at most twice in i 1, 2, ..., n(n=1, 2, ...), and if twice,
from negative to positive to negative. Thus (i) follows.
A similar argument using part (ii) of Lemma 4.4 yields (ii). For the case

Fs G the proof is similar. ||

We now present a converse to Theorem 4.5 (ii).




Theorem 4.6. Let the support of F be an interval and let F be continuous
at F'l(O). Suppose for all a 2 0 and b > 0, and infinitely many n 2 1,

aEX - EY - b changes signs at most twice ini =1, 2, ..., n, and if

i:n i:n
twice, from negative to positive to negative. Then F < G.
Proof. Let a 2 0, b 2 0. Since F'l(t) and G—l(t) are points of increase

for all t (0 <t < 1), then aF 2(t) - ¢ l(e) - b = Lin(aEX - b)

n-+o

nt]:n ~ EY[nt]:n

changes signs at most twice in t (0 < t < 1), and if twice, from negative to
positive to negative. Letting t = F(x), we get that ax - b - G'lF(x) changes
signs at most twice in x (F'I(O) < x < F'l(l)). Since F is continuous at

1F is convex on

F-I(O) and 6 TP is strictly increasing in x(-» < x < »), G~
(-, F_l(l), as desired. ||

A result similar to Theorem 4.6 is available for concave ordering but we
omit it.

The next theorem concerns the ratios of order statistics.

Theorem 4.8. Let F é %%) G and let F be continuous at F'l(l) (at F'l(O)).

Then

Y. - Y. X. - X,
i+l:n i:n st i+l:n i:n
L ¥ GHpt

i:n i-1:n i:n i-1:n

for all i andn (i =2, 3, ..., n-1; n2 2).
-1 ; X
Proof. Let F é G and let Yi:n = G F(xi:n) for i = 2, 8, suse N =1 n 2 2.

’ R - i . ;
Then (len’ e g Yn:n) = (len’ e Yn:n) since F é G and F continuous at

F'l(l) imply that F is continuous. Since 6lF is convex, then




v i ' &
Yi#l:n Yi:n > xi#l:n xi:n
X! - X7 X. - X,

i:n i-1:n i:n i-1l:n

fori=2,3 ..., n-1; n22., Since

Yi+1:n - Yi:
Y

R R ’

(] =, '
ns Yi.*»l:n Yi:
& - Y.

i:n i-1l:n i:n i-1:

n
n
the conclusion follows in the case F é G.

A similar argument yields the conclusion when F < G. I

If F é(€§)6 it is reasonable to expect that information about the order

statistics Yl-n’ Yz.", vawng ¥ yields information about the order statistics

n:n

xl-n’ x2'n’ So sy xn'n' Theorem 4.9 shows one way this cxpectation is fulfilled.

Other examples will follow.
Theorem 4.9. Let F - (év)G and the support of F be an interval. Let

1<i <j<f<n, i<k<2® anda > 0. Then

p[Yll.:n 5 Yj:n " a(Yk:n i} Yi:n)] M) P[xll,:n i xj:n y a(Xk:n ) xi:n)]'

Proof. Let F E Gand Y! , Y!

$<a » Y. be as in the proof of Theorem

2 T T
4.5, Let ¢(y) be the concave function F-IG. Then for 1 < i € j < £ < n and

i<ksyg,

P0G - A0 ) ) - a0 )

ST i3 ¥ e IV
Yk:n Yi:n Yzzn 4Y5:n

(see Royden, 1968, p. 108). Hence
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Thus for a > 0,
T Yoo = X
P"'"_!'"zaspyl‘"_!'nza,
n i:n k:n i:n

and the conclusion follows.
If F < G the proof is similar. I

Let a be a positive constant for each %, j, k, and i such that

Ljki
1si<js<ke<tandletV (X) = {1[x,“n - xj:n 2 aljki(xk:n - X;, )1, where

the summation ranges over all i, j, k and £ such that 1 < i < k < £. Equivalently,
Vn(y is the number of comparisons for which the inequality xl'n - xj'n 2
aljki(xk:n - xi:n) holds as i, j, k and & range over the appropriate domain.

We can now state a corollary of Theorem 4.9 which can be used for nonparametric

tests for F é(&)c; in particular, tests for IFR, SDFR, and decreasing aensity.

Corollary 4.10. Let F é(c,(v)c and the support of F be an interval. Then

t . s
vo ¥ & v .
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5. Starshaped (Antistarshaped) Ordering and Order Statistics.

In this section we consider another ordering, namely starshaped (anti-
starshaped) ordering. The first result gives a necessary and sufficient con-
dition in terms of the order statistics for two life distributions to be
related under the starshaped (antistarshaped) ordering.

Theorem 5.1. Let F and G be continuous life distributions with finite
means. Assume that the supports of both F and G are intervals and that

G(0) = F(0) = 0. Then F 5(53)6 if and only if Exi'n/EY " is decreasing

i:
(increasing) in i(i = 1, 2, ..., n) for infinitely many n.

Proof. We prove F g G if and only if Exi-n/EY is decreasing in

i:n
i(i =1, 2, ..., n) for infinitely many n. The counterpart result for F o G
has a similar proof. The 'only if'" part is Theorem 3.6 of Barlow and
Proschan (1966).

To show the "if" part recall that in the proof of Theorem 4.4 we showed
that EXgor. + FTI(6) and BYp o 6 1(t) as n + =. Thus if
EX(ne]:n/EY [ne]en 15 decTeasing in t (0 < t < 1), then Fliy/eice) is
decreasing in t (0 < t < 1). Equivalently, F ) (F(x))/6 (F(x)) = x/G 'F(x)
is decreasing (increasing) in x(0 < x < F'l(l)). The "if" part follows. ||

Corollary 5.2. (Theorem 5.6 of Langberg, Le6n, and Proschan). Let F be

a continuous life distribution with finite mean. Assume that the support of
F is an interval and that F(0) = 0. Then F is IFRA(DFRA) if and only if

i
Exi,n/ J(n-xoe 1)'l is decreasing (increasing) in i (i =1, 2, ..., n) for

k=1
infinitely many n.
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i
Proof. With G(x) = 1 - e* in Theorem 5.1, EY,. = J(n-ke 1! for
- k=1
i=1, 2, ..., n (see Barlow and Proschan, 1975, p. 60). The conclusion

follows. ||

Corollary 5.3. Let F be as in Corollary 5.2. Then F is a life distribution

with decreasing density if and only if (n/i) Exi:n is increasing in i
(i=1, 2, ..., n) for infinitely many n.

Proof. With G the uniform distribution on (0, 1), Eyi:n = i/(n + 1) for
R TR ROREN R

As in the case F é(é;)c, if F 3(;&)6, then information about the order
statistics,Ylfn;Yz:n, e Yn:n yields information about the order statistics
xlzn, x2:n, wleles xn:n' The next two theorems show two ways to make the above
statement precise.

Theorem 5.4. Let F ;(;g) G and the support of F be an interval. Then

t R £ .St . = ’ :
Yi:ni (ss’)a Y’j:n implies Xi:ns:(<)a ‘(j:n’ where J <a<landl1<i<j<n, n>2.

Proof. Let Y! , Y!

» «++5 Y' be as in the proof of Theorem 4.8.
1:n’ "2:n n:n

Then for i < j,

= -1 '
. n e (Yi:n)

5
¥ ¥ G-I(Yi:n)
t . S -1
¢ PHrcla Yy
. ot
2 ($)aF 6y )

[since F ¢! is antistarshaped (starshaped)]

¢ ar c'l(vgm)
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s
Hence thi‘ (st)a xj:n' [

Theorem 5.5. Let F ;(dg)G and the support of F be an interval. Let
1<i<jsnanda> 0. Then

P(Y, =2 aYi:n) 2(2) P(xj:n 2alX

j:n i:n)'

Proof. Let F f G and Yi:n’ Yé:n’ e Yﬁ:n be as in the proof of Theorer:

4.8. Let ¢(y) be the antistarshaped function F1G. Then for 1 si < jsn,

$OYIL) (Y] )
i:n j:n
Hence

.. Ko
o el
i:n iin
; The conclusion follows as in the proof of Theorem 4.9.
~ If F _g G, the proof is similar. 1

It is clear that a corollary to Theorem 5.5 can be fashioned along the
lines of Corollary 4.10. This corollary can be used for nonparametric tests

} for F 5(;&) G; in particular, for tests for IFRA and DFRA.
e prove a converse of Theorem 5.4.
Theorem 5.6. Let the support of F be an interval. Suppose
| EYi:n 2(s)a Eyj:n implies sxi:n 2(<)a Exj:n for all a(0 < a < 1) and all
i, j,n (1 si<j sn). Then F g(gg)c.

Proof. Suppose F § G is not true. Then there exist an a (0 < a < 1) and
N an x 2 0 such that G'lF(ax) > a G'IF(x). Therefore there exists a y > x such
that G'IF(ax) > a G'lF(y). Hence for n sufficiently large, EY[nF(ax)]:n >

>
| a EY[nP(y)]:n' By hypothesis, this implies that for n sufficiently large,

“*[nr(-x)]:n >a Bx[nF(y)]:n. Consequently F‘l(r(.x)) 2a F‘I(F(y)); that is,

ax 2 ay - a contradiction. ||

LA DI it ol g ) s <V e




20

REFERENCES

1. Barlow, R. E. (1977). Geometry of the total time on test transforn.
Technical Report ORC 77-11, University of California, Berkeley.

2. Barlow, R. E. and Campo, R. (1975). Total time on test processes and appli-
cations to failure data analysis. Reliability and Fault Tree Analysis, It
451-482 (R. E. Barlow, J. B. Fussell and N. D. Singpurwalla, eds.). !
SIAM, Philadelphia.

3. Barlow, R. I. and Doksum, K. (1972). Isotonic testvfor convex orderings.
Proc. 6th Berkeley Symp. Math. Statist. and Probab., 1., 293-323.

4. Barlow, R. E. and Proschan, F. (1966). Inequalities for linear combinations ]
of order statistics from restricted families. Ann. Math. Statist. 37, £
1574-1591. :

S. Barlow, R. E. and Proschan, F. (1975). Statistical Theory of Reliability
and Life Testing: Probability Models. Holt, Rinehart and Winston,
Inc., New York.

isctonic estimators for the generalized failure rate function.
Nonparametric Techniques in Statistical Inference. Eds. Puri, 3
M. L. Cambridge Univ. Press, 159-173. |

E
6. Barlow, R. E. and Van Zwet, W. R. (1970). Asymptotic properties of 5
i

7. Breiman, Leo (1968). Probability. Addison-Wesley Publishing Company, i
Reading, Massachusetts).

8. Chandra, M. and Singpurwalla, N. D. (1978). On the Gini index, the Lorenz
curve, and the total time on test transform. George Washington
University Serial T-363.

9. Chung, K. L. (1974). A Course in Probability Theory, 2nd ed.. Academic
Press, New York.

10. Langberg, N. A., Leb6n,R., 21d Proschan, F. (1978). Characterization of
nonparametric clasces of life distributions. Dept. of Statistics,
Florida State Univ. Technical Report AFOSR No. 86.

11. Rao, C. R. (1973). Lincar Statistical Inference and Its Applications. John
Wiley and Sons, New York.

12. Royden, il. L. (1968). Real Analysis, 2nd ed., lkiacmillan, Toronto.

13. Van Zwet, W. R. (1964). Convex Transformations of Random Variables. Amster-
dam Mathematical Centre.

L T EPERET S S, SR = - SR USLs =Tk S~ W— -




X St

LASSGIE - .

" (]9 REPORT DOCUMENTATION PAGE W LS

= R e R [2. GOVT ACCESSION NO.| 3. R?ﬁu‘r's CATALOG NUMBER
{
AFOSR-TR—79 -0 0 9 37 (2
} e e Sa— R —— . = o
4 TITLE (and Subritie) S. TAPE OF REPORT & PERIOD COVERED

Characterization of Partially Ordered

Classes of Life Distributions . I“terimlf7-7.~ }/« s J/

N PERFORMINS ORG.BEPORT MMBER

[ : llt ; FSfJ“:‘S‘ta;igj_;ics Repott_M481,]

m e

S

Naftali A.Aangberg
Ramén V. fLeén )
Frank/Proschan

. AUTHOR(s) _6.__59}., RACT.OR-GRANT NUMBERTs)
/ — L_,,,——-v- ™ 3 17/-
‘\(:; v AFOSR 78-3678 | llfi--.-_'.w.‘

9. PZRFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
The Florida State University AREASIWORK LINIT "“@
Department of Statistics / %) —
Tallahassee, Florida 32306 61102F | 23g4fhs/

11. CONTROLLING OFFICE NAME AND ADDRESS /\} 12. REPORT DAT:..N, "

(7)) octesez, 1978/
Air Force Office of Scientific Research /NM 13. NUMBER OF PAGES
Bolling Air Force Base, D.C. 20332 23

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 5. SECURITY CLASS. (of this report)

- ‘"/-j j

s

// / ) % ‘/ Unclassified

, ol
{ ) 1Sa. DgCL.ASSIFICATION"DOWNGRADING
T (RN iy SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side if necessary and identify by block number)

Characterizations, life distributions, order statistics, specings, total time
on test transform, nonparametric, Lorenz curve, failure rate, reliability,
partial ordering, convexity, starshaped, decreasing density.

!

.20. ABST\EACT (Continue on reverse side If necessary and Identify by block number)

©_ In this paper we obtain characterizations of life distgibutions F such
that (@ G “(F) is convex (concave) and alternatively 4b) G ~(F) is starshaped
(antishaped), where G is an absolutely continuous life distribution with
positive, bounded, right continuous density. These characterizations general-
ize earlier results for the IFR(DFR) and IFRA(DFRA) classes, and should prove
useful in unifying the study of the class distributions with decreasing
density, comparing Weibull (Gamma) distributions with different shape para-

P

meters, etc

DD | 5n's 1473

Vg TS UNCLASSIFIED I
\ ///y‘,/‘ P / / SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




